
Using the SPF Algorithm to Optimize the

Performance of UNIX Stream Processing

in a Distributed Computing Environment

Kenan Kalajdzic <kenan@unix.ba>

Written in March 2012 (original idea 2007)

Abstract

In this document we present the concept of a work-distributing
UNIX shell, which relies on the Shortest Path First algorithm to op-
timally distribute the execution of shell pipelines across multiple com-
puters. The two biggest difficulties in designing such a shell are finding
the way to define the meaning of “cost” and calculating the costs of
all individual components constituting a shell pipeline. Once the costs
are correctly defined and calculated, applying the SPF algorithm is a
fairly straightforward process.

1 Introduction

Of all the ideas, which have contributed to the great success of the UNIX
operating system, pipes are probably among the most significant. They allow
the user to quickly connect multiple independent programs into complex
commands usually referred to as pipelines.

Even though pipes are primarily designed for synchronous sequential
processing of data streams, a pipeline consists of multiple processes, which
allows for a certain degree of parallelism. With the expansion of computer
networks and the invention of the remote shell service, it became possible
to construct pipelines with commands which may be spread across multiple
computers. For example, instead of writing

$ tar cf - /home | gzip -c >home.tar.gz

a user could execute the tar command on the local computer and let a
remote host perform the compression with gzip:

$ tar cf - /home | rsh rhost ’gzip -c’ >home.tar.gz

1

Using this technique occasionally as an easy way to speed up the execution
of time-consuming pipelines is reasonable. It can, however, not be accepted
as a general practice, because it complicates the usage of the command line.

Instead of requiring the user to manually parallelize the pipeline by ex-
plicitly inserting invocations to rsh, the parallelization should rather be per-
formed automatically by the shell1. The user would type in the command
line as usual, and the shell would intelligently and optimally distribute all
the processes in the pipeline across the available nodes and CPUs. If done
correctly, this implicit parallelization would allow millions of shell scripts
worldwide to run unmodified on any given configuration of computers and
processors.

Consider, for example, a user who wants to rotate a JPEG image and
scale it down to 20% of its original size using NetPBM image manipulation
tools. To do so, the user could enter the following self-explanatory shell
command line:

$ jpegtopnm <in.jpg | pnmrotate 90 | pnmscale 0.2 \

| pnmtojpeg >out.jpg

For each of the four commands in the pipeline, the work-distributing shell
would decide whether to run it locally or remotely and insert the invocations
to rsh appropriately, as in the following example:

jpegtopnm <in.jpg | rsh remotehost1 ’pnmrotate 90’ \

| rsh remotehost2 ’pnmscale 0.2’ | pnmtojpeg >out.jpg

The command line is transformed transparently “behind the scenes”, so
that the user is not aware that some of the commands are being executed
on remote computers.

2 Optimal distribution of processes

When a user, working on a single isolated computer, enters the following
simple command line

$ cmd1 <in | cmd2 | cmd3 >out

the shell spawns three processes, P1, P2 and P3, and connects them by pipes
as shown in Figure 1. Here we assume that P1 executes cmd1, P2 executes
cmd2 and P3 executes cmd3. The data stream originating at the input in

has a unique, precisely defined processing path, which we will conveniently
denote by (in→ P1 → P2 → P3 → out).

1In this document, we interchangeably use the terms shell and work-distributing shell

to refer to a command interpreter which has the ability to automatically and intelligently

distribute the work across multiple computers.

2

P1 P2 P3in out

Figure 1: A simple pipeline consisting of three processes running on a single
computer

When, beside the local host, the user has access to one remote computer,
the shell may distribute the execution of the processes P1, P2 and P3 in
several different ways. The graph in Figure 2 shows all the possible data
paths between in and out. The vertices of the graph represent processes
executing on one of the two computers, while its edges represent pipes and
network links used for data streaming between individual processes. By Pi,L

we denote that the process Pi is executing on the local host, whereas Pi,R

means that the process Pi is executing on the remote host. We also assume
that in and out reside on the local host, where the shell is running.

P1,L P2,L P3,L

P1,R P2,R P3,R

in out

Figure 2: A graph showing all possible paths for distributing processes P1, P2

and P3 across two computers

Without having to worry about where the individual processes will be sched-
uled to run, the user would enter the exactly same command line as in the
case of a single computer:

$ cmd1 <in | cmd2 | cmd3 >out

This time, however, the shell attempts to distribute the three commands
across the two available computers in an optimal way which minimizes the
total execution time. This happens in two steps:

1. The shell first assigns costs to all vertices and edges of the graph in
Figure 2. The costs of the vertices quantitatively describe how much
each process contributes to the overall execution time. The costs of
the edges take into account the time required for transferring data
between any two processes, along with delays introduced by context
switching and a possibly increased system or network load.

3

2. Once all the individual costs have been assigned, the shell applies the
Shortest Path First algorithm to find the data path with the poten-
tially minimal execution time.

After having determined the optimal data path, the work-distributing shell
inserts rsh invocations as appropriate and executes the transformed pipeline.

2.1 Example 1

In this scenario, we assume that the size of the input in is not very large.
In such a case the shell may decide that it is beneficial to send the input
directly to rhost and execute cmd1 there, while scheduling cmd2 and cmd3
for local execution:

$ rsh rhost ’cmd1’ <in | cmd2 | cmd3 >out

This execution pattern corresponds to the data path (in→ P1,R → P2,L →

P3,L → out) which is shown in Figure 3.

9 6 7

5 7 8

in out

6

4

5

4

5

4

3

6

3 3

5
5

Figure 3: The result of running the SPF algorithm. Process P1 is executed on
the remote host, while P2 and P3 are run locally.

2.2 Example 2

Now assume that the remote host is a multiprocessor computer with more
processing power than the local host. It may therefore seem reasonable
to run all three commands on the remote host by modifying the original
pipeline in the following way:

$ rsh rhost ’cmd1 | cmd2 | cmd3’ <in >out

The data path for this execution pattern would be (in → P1,R → P2,R →

P3,R → out).
Nevertheless, using its database of accumulated knowledge the shell de-

termines that cmd1 features some sort of data compression, so that the size
of its output is on average around 30% of the size of its input. So, even

4

9 12 10

3 5 4

in out

2

4

5

4

7

6

3

5

3 3

14
6

Figure 4: The result of running the SPF algorithm. Process P1 is run on the
local host, while P2 and P3 are executed on the remote host.

though the remote host is computationally superior to the local host, if the
size of the input is very large, the shell may estimate that it would be infea-
sible to send the large amount of data over the network to rhost. It might
therefore decide to run cmd1 locally and continue with the processing of the
pipeline on the remote host. The data path for this scenario would thus be
(in → P1,L → P2,R → P3,R → out) (Figure 4), which would correspond to
the following command line:

$ cmd1 <in | rsh rhost ’cmd2 | cmd3’ >out

2.3 Calculating the costs

The two examples from Sections 2.1 and 2.2 show the results of applying the
Shortest Path First algorithm to find the optimal data path for our pipeline.
Nevertheless, one important question still remained unanswered:

How does the work-distributing shell exactly calculate the

individual costs for each vertex and edge of the graph?

Specifically, how does the shell know that executing process P3 on the remote
host contributes twice as much to the total execution time as transferring
data between processes P1 and P2 on the local host (Figure 3)?

We might be able to find the answer to this question through extensive
research. To appreciate the challenges which this research could bear, let us
briefly look into the problem of cost calculation in a little bit more detail.

2.3.1 The complexity of cost calculation

When trying to calculate the costs of processing and data transfers, the
work-distributing shell needs to take multiple factors into account:

5

1. Speed and number of processors/cores on each node – Knowing
how many processor cores are available on each of the nodes and how
fast these are is the essential information which a work-distributing
shell would use when deciding how to distribute all the processes in
a pipeline. The shell could obtain this information by “asking the
system” about it (e.g. reading /proc/cpuinfo on Linux systems), or
by running benchmarks to obtain some sort of a measure.

2. Speed of communication links between nodes – The shell needs
this measure to correctly estimate how much time would be required to
send data over the network to a remote node. It helps the shell decide
whether sending the data is feasible or not in a given situation. Along
with the CPU speed, this measure belongs to the most important
information upon which a work-distributing shell would base its cost
calculations.

3. Different or unpredictable nature of commands – This is where
things get really complicated. There is a large number of commands
which all behave differently and have different processing patterns
and requirements. Some commands are CPU-intensive, while others
mostly focus on I/O operations. The shell must be able to differentiate
between these two categories of programs and “understand” how they
will affect the execution time of a pipeline.

Then, there are differences in the input/output ratio among com-
mands. Some programs, such as cat or pnmrotate (rotates an image),
don’t alter the size of the input stream. Others, like gzip or bzip2,
usually produce output which is smaller than their input, while some
(e.g. bunzip2) inflate their input to produce a bigger output. But
knowing that a command compresses its input is, unfortunately, not
enough. The compression ratio will most of the time be dependent
on the type of input and the algorithm used. For example, trying to
compress an already compressed input won’t yield any further com-
pression, while compressing a plain text file may produce output of
a size somewhere between 30% and 40% of the size of the input, de-
pending on whether the user typed gzip -1 or gzip -9.

To cope with all these complexities, a work-distributing shell must in-
clude a fairly sophisticated semantic layer which would help the shell
learn about the behavior of different commands and use the accu-
mulated knowledge to estimate how much a certain command would
contribute to the overall execution time of a pipeline. But even with
a significant amount of knowledge, a work-distributing shell may not
always be able to precisely calculate all the costs. This calls for intro-
duction of a probabilistic model to help the shell reach a reasonably
good decision in cases when some information is missing.

6

4. Current load of each node – The current system load may greatly
affect the cost calculation for any node. To estimate the load for
each individual computer, the shell could use the values of the load

average for the last minute and the current CPU load for each of the
available processors. On Linux systems, for example, these values can
be obtained from the files /proc/loadavg and /proc/PID/stat for
each of the processes.

5. Detecting which operations are inherently local – A work-
distributing shell must have the ability to recognize commands which
cannot be executed on a remote node. In the pipeline

$ tar cf - /home | gzip -c >home.tar.gz

gzip can be moved to a remote computer, but tar must be executed
locally, because it is used to archive the local /home directory!

7

